Sunday, November 14, 2010

Optical fiber

Optical fibers are well known as fiberscopes for imaging applications and as light guides for a wide range of non-imaging applications. In the latter context, they can also be used for daylighting: a solar lighting system based on plastic optical fibers was in development at Oak Ridge National Laboratory in 2004;[8][9] the system was installed at the American Museum of Science and Energy, Tennessee, USA, in 2005,[10] and brought to market the same year by the company Sunlight Direct.[11][12]
A similar system, but using optical fibers of glass, had earlier been under study in Japan.[13]
In view of the usually small diameter of the fibers, an efficient daylighting set-up requires a parabolic collector to track the sun and concentrate its light.
Optical fibers intended for light transport need to propagate as much light as possible within the core; in contrast, optical fibers intended for light distribution are designed to let part of the light leak through their cladding.[14]

[edit] Transparent hollow light guides

A prism light guide was developed in 1981[15] and has been used in solar lighting for both transport and distribution of light.[16][17] A large solar pipe based on the same principle has been set up in a narrow courtyard of a 14-floor building of a Washington D.C. law firm in 2001,[18][19][20][21][22] and a similar proposal has been made for London.[23] A further system has been installed in Berlin.[24]
The 3M company developed a system based on optical lighting film[25] and developed the 3M light pipe,[26] which is a light guide designed to distribute light uniformly over its length, with a thin film incorporating microscopic prisms,[15] which has been marketed in connection with artificial light sources, e.g. sulfur lamps.
In contrast to an optical fiber which has a solid core, a prism light guide leads the light through air and is therefore referred to as hollow light guide.
The project ARTHELIO,[27][28] partially funded by the European Commission, was an investigation in years 1998 to 2000 into a system for adaptive mixing of solar and artificial light, and which includes a sulfur lamp, a heliostat, and hollow light guides for light transport and distribution.

[edit] Fluorescence based system

In a system developed by Fluorosolar and the University of Technology, Sydney, two fluorescent polymer layers in a flat panel capture short wave sunlight, particularly ultraviolet light, generating red and green light, respectively, which is guided into the interior of a building. There, the red and green light is mixed with artificial blue light to yield white light, without infrared or ultraviolet. This system, which collects light without requiring mobile parts such as a heliostat or a parabolic collector, is intended to transfer light to any place within a building. [29][30][31] By capturing ultraviolet the system can be especially effective on bright but overcast days; this since ultraviolet is diminished less by cloud cover than are the visible components of sunlight.

[edit] Properties and applications

[edit] Solar and hybrid lighting systems

Solar light pipes, compared to conventional skylights and other windows, offer better heat insulation properties and more flexibility for use in inner rooms, but less visual contact with the external environment.
In the context of seasonal affective disorder, it may be worth consideration that an additional installation of light tubes increases the amount of natural daily light exposure. It could thus possibly contribute to residents´ or employees´ well-being while avoiding over-illumination effects.
Compared to artificial lights, light tubes have the advantage of providing natural light and of saving energy. The transmitted light varies over the day; should this not be desired, light tubes can be combined with artificial light in a hybrid set-up.[16][32][33][34]
Some artificial light sources are marketed which have a spectrum similar to that of sunlight, at least in the human visible spectrum range,[35][36][37] as well as low flicker.[37] Their spectrum can be made to vary dynamically such as to mimick the changes of natural light over the day. Manufacturers and vendors of such light sources claim that their products can provide the same or similar health effects as natural light.[37][38][39] When considered as alternatives to solar light pipes, such products may have lower installation costs but do consume energy during use; therefore they may well be more wasteful in terms of overall energy resources and costs.
On a more practical note, light tubes do not require electric installations or insulation, and are thus especially useful for indoor wet areas such as bathrooms and pools. From a more artistic point of view, recent developments, especially those pertaining to transparent light tubes, open new and interesting possibilities for architectural design.

 

No comments:

Post a Comment